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Abstract According to the characterization of eigenvalues of a real symmetric matrix A,
the largest eigenvalue is given by the maximum of the quadratic form 〈x A, x〉 over the unit
sphere; the second largest eigenvalue of A is given by the maximum of this same quadratic
form over the subset of the unit sphere consisting of vectors orthogonal to an eigenvector
associated with the largest eigenvalue, etc. In this study, we weaken the conditions of orthog-
onality by permitting the vectors to have a common inner product r where 0 ≤ r < 1.
This leads to the formulation of what appears—from the mathematical programming stand-
point—to be a challenging problem: the maximization of a convex objective function subject
to nonlinear equality constraints. A key feature of this paper is that we obtain a closed-form
solution of the problem, which may prove useful in testing global optimization software.
Computational experiments were carried out with a number of solvers.

Keywords Constrained optimization · Test problem · Quadratic forms · Intraclass
correlation matrices · Eigenvalues · Eigenvectors
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1 Introduction

According to the characterization of eigenvalues of a real symmetric matrix A—as developed,
for example, by Bellman [2, Chapter 7]—the largest eigenvalue is given by the maximum of
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the quadratic form 〈x A, x〉 over the unit sphere; the second largest eigenvalue of A is given
by the maximum of this same quadratic form over the subset of the unit sphere consisting
of vectors orthogonal to an eigenvector associated with the largest eigenvalue, etc. Results
like this and the Courant-Fischer Min-Max Theorem are, in a sense, related to (or shed some
light on) the problem we study here.

Let A denote a positive semidefinite diagonal matrix of order n ≥ 2. For a given scalar
r such that 0 ≤ r < 1, we seek a matrix X ∈ R

n×n with rows x1, . . . , xn that (globally)
maximizes the function

Fn(X) =
n∑

i=1

〈xi A, xi 〉 (1)

subject to the constraints

gi (X) = 〈xi , xi 〉 = 1, i = 1, . . . , n, (2)

and

hi j (X) = 〈xi , x j 〉 = r, for all i �= j. (3)

Denote by Pn(r) the constrained maximization problem (1)–(3).
It is helpful—but not restrictive—to relabel the variables in such a way that the diagonal

elements of A are arranged in descending order. Therefore, assume from the start that

A = Diag(α1, α2, . . . , αn) and α1 ≥ α2 ≥ . . . ≥ αn ≥ 0. (4)

(The αi are, of course, eigenvalues.) For the sake of nontriviality, however, assume that
α1 > αn ; otherwise, the objective function Fn(X) = nα1 = tr(A) for all solutions of (2). As
it happens, the maximization problem Pn(0) is also trivial, for then R = I , the feasible matri-
ces X are orthogonal, and tr(X AX ′) = tr(A), that is, the objective function is constant on the
feasible region of Pn(0). For this reason, assume hereafter that r > 0. Yet, even though we
disallow the cases α1 = αn and r = 0, our conclusions are valid for these possibilities as well.

There are infinitely many matrices that satisfy the constraints of Pn(r). For our purpose,
it is convenient to single out a particular matrix which we now describe.

Let I ∈ R
n×n be the identity matrix and let E ∈ R

n×n denote the matrix of all ones.
Define the parameters

µ = √
1 − r and ν =

√
1 + (n − 1)r − √

1 − r

n
. (5)

Then put

Cn = µI + νE ∈ R
n×n . (6)

The rows of this matrix satisfy the constraints (2) and (3). Accordingly, the feasible region
of Pn(r)—the set X of vectors satisfying its constraints—is nonempty and compact. Because
the objective function Fn is continuous, its global extrema are attained on the feasible region,
but not uniquely so. For instance, if X satisfies (2) and (3), then so does −X . Indeed, if X
satisfies (2) and (3), then for any orthogonal G ∈ R

n×n , XG also satisfies (2) and (3). The
nonuniqueness can arise in another way as well. Because r < 1, it follows that the vectors xi

and x j cannot be equal when i �= j. Problem Pn(r) can be stated more succinctly. Indeed,
for any n × n matrix X , the objective function can be expressed conveniently as the trace of
X AX ′:

123



J Glob Optim (2008) 42:609–617 611

Fn(X) =
n∑

i=1

〈xi A, xi 〉 = tr(X AX ′). (7)

The constraints can be stated (albeit with some redundancy) in the form

X X ′ = R = (1 − r)I + r E . (8)

In the statistical literature a matrix of this form is called an intraclass correlation matrix.
Thus the problem Pn(r) is just

maximize tr(X AX ′) subject to X X ′ = R. (9)

The eigenvalues of R are 1 + (n − 1)r and 1 − r , the latter with multiplicity n − 1, and
consequently, for 0 < r < 1, the matrix is positive definite.

We observe that the feasible region X of problem Pn(r) is nonconvex, which rules out the
use of convex programming results. To make matters worse, the maximand is convex. It is
conceivable, however, that the following observation might prove useful for computational
purposes.

The diagonal matrix D = α1 I − A is positive semidefinite; its diagonal entries
d1, d2, . . . , dn satisfy 0 = d1 ≤ d2 ≤ . . . ≤ dn . Because of the n constraints (2), the
restriction of Fn to the feasible region X is given by

Fn(X) =
n∑

i=1

〈xi A, xi 〉 =
n∑

i=1

〈xi (α1 I − D), xi 〉 = nα1 −
n∑

i=1

〈xi D, xi 〉.

This means that the maximization of the convex function Fn over X is equivalent to the
minimization of the convex function −Fn(X). Whether this alternate formulation would have
computational merit is unclear, but, as our analysis will show, the question is moot because
we obtain a closed-form solution of Pr (n) by matrix-theoretic methods. Accordingly, we
proceed with the original problem statement.

Remark 1 A solution to (9) can be obtained by letting R−1/2 X = Y , where R1/2 is the
unique symmetric positive definite square root of R, in which case the constraint becomes
Y Y ′ = I. Then

tr(Y AY ′ R) ≤
n∑

i=1

αiρi ,

where α1 ≥ . . . ≥ αn, ρ1 ≥ . . . ≥ ρn are the ordered eigenvalues of A and R, respectively.
Unless A or R has some special structure, a closed-form solution to (9) is not obtainable.
In the present case, the structure of R does permit a closed-form solution of (9). This is
significant because it enables verification of the effectiveness of global optimization algo-
rithms and thereby represents a contribution to the literature of global optimization test
problems, see [3]. In (12) we state the global maximum value of the objective function. This
should prove useful in testing algorithms because of the nonuniqueness of the global optima
in (9).

2 First-order optimality conditions

Problems such as Pn(r) can be treated by the familiar Lagrange multiplier rule. In this case,
the theorem states that if X̃ is a local extremum of Fn subject to the constraints (2) and (3),
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and if the gradients of the constraint functions are linearly independent at X̃ , then there exist
m = n(n + 1)/2 scalars λ1, . . . , λn, µ12, . . . , µn−1,n such that X̃ satisfies

∂ Fn(X)

∂xk
−

n∑

i=1

λi
∂gi (X)

∂xk
−

∑

i< j

µi j
∂hi j (X)

∂xk
= 0 for each k = 1, . . . , n, (10)

where the operator ∂/∂xk signifies taking the (partial) gradient with respect to the vector xk .
It is customary to use the stationarity conditions (10) as a way of finding the matrix X̃ even

though it is not clear that the regularity condition (linear independence of the gradients) holds
at every feasible X . In any event, (10) is a set of necessary first-order optimality conditions.
These first-order conditions do not distinguish between local maxima and minima. For that,
one usually needs to use second-order optimality conditions.

When these first-order conditions hold, the special structure of problem Pn(r) permits us
to make a statement about the objective function value at any feasible X at which (10) holds.
Indeed for each k = 1, . . . , n,

∂ Fn(X)

∂xk
= 2xk A, and

∂gi (X)

∂xk
= 2xk (if k = i),

whereas
∂hi j (X)

∂xk
= x j (if k = i) and

∂hi j (X)

∂xk
= xi (if k = j).

Now suppose X̃ is a solution of (10). After multiplying each of these n equations by the
corresponding x̃ k , we obtain

2〈x̃ k A, x̃ k〉 − 2λk〈x̃ k, x̃ k〉 −
∑

i<k

µik〈xi , xk〉 −
∑

k< j

µk j 〈xk, x j 〉 = 0.

If X̃ is also a solution of (2) and (3), substitution into—and then adding—these equations
leads to

2
n∑

k=1

〈x̃ k A, x̃ k〉 − 2
n∑

k=1

λk − 2r
∑

i< j

µi j = 0,

thereby yielding the interesting relationship

Fn(X̃) =
n∑

k=1

λk + r
∑

i< j

µi j . (11)

There is, however, another expression for the optimal value of Fn . This formula—which
will be developed later—is

Fn(X) = tr(A) + r tr(D). (12)

A comparison of the formulas (11) and (12) raises the question: How are the individual
Lagrange multipliers related to the diagonal elements of A and D? The answer for n = 2 is
given below. For larger values of n, the Lagrange multiplier methodology becomes cumber-
some. However, the form of the solution for n = 2 suggests a potential solution for n > 2.
Indeed, we manage to obtain a closed form solution to Pn(r) by other means, and in so doing,
verify (12).
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2.1 The case of n = 2

The Lagrange multiplier rule is especially effective in the case of problem P2(r) which calls
for maximizing the convex function F2(x1, x2) subject to three nonlinear equality constraints:

g1(x1, x2) = 〈x1, x1〉 − 1 = 0, (13)

g2(x1, x2) = 〈x2, x2〉 − 1 = 0, (14)

h12(x1, x2) = 〈x1, x2〉 − r = 0. (15)

In this case, one writes out the first-order optimality conditions as already given. This
approach and a bit of elementary algebra lead to the discovery of the values of the Lagrange
multipliers and two corresponding stationary points:

X̂ =
⎡

⎣

√
1+r

2

√
1−r

2√
1+r

2 −
√

1−r
2

⎤

⎦ , X̆ =
⎡

⎣

√
1−r

2

√
1+r

2

−
√

1−r
2

√
1+r

2

⎤

⎦ .

Because

F2(X̂) = a1 + a2 + r(a1 − a2), and F2(X̆) = a1 + a2 − r(a1 − a2),

assumption (4) implies F2(X̂) > F2(X̆) meaning that X̂ is a maximum and X̆ is a minimum
for P2(r).

As a transition to the next section, we remark that

X̂ =
⎡

⎣

√
1+r+√

1−r
2

√
1+r−√

1−r
2

√
1+r−√

1−r
2

√
1+r+√

1−r
2

⎤

⎦

⎡

⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ .

In accordance with (5) and (6), the left-hand factor in this matrix equation is C2. This
formula is the gist of what we aim to prove in general.

3 The general case

In this section we generalize the findings of Sect. 2, but not by means of Lagrange multipliers;
that approach proved to be unwieldy and less promising than originally expected. Instead we
apply some matrix theory and exhibit a closed-form solution of Pn(r). To this end, we recall
the definitions of µ and ν given in (5) from which it will be seen that µ is a function of r ,
whereas ν is a function of both r and n.

From the form of the matrix R, and the simple fact that E2 = nE , it can be verified by
multiplication that

R1/2 = √
1 − r I +

(√
1 + (n − 1)r − √

1 − r

n

)
E = µI + νE;

which was denoted, in (6) by Cn ; while feasible, this matrix is neither a maximum nor a
minimum for Pn(r), yet it is well suited for obtaining the desired optimal solution. Indeed
for any feasible matrix X , we have

X X ′ = CnC ′
n .
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A result of Parker [6, Theorem 5] then implies that X = CnU for some orthogonal
matrix U .

For this reason, the problem becomes one of finding an orthogonal matrix U for which

X = CnU (16)

maximizes tr(X AX ′).
Our choice for U is the transpose of the Helmert matrix Hn of order n. The first row of Hn

is (1/
√

n)(1, . . . , 1). For i = 2, . . . , n, the i th row of Hn is (1/
√

(i − 1)i)(1, . . . , 1,−1,

0, . . . , 0); the negative component is in the i-th position. For example,

H5 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
5

1√
5

1√
5

1√
5

1√
5

1√
1·2 − 1√

1·2 0 0 0

1√
2·3

1√
2·3 − 2√

2·3 0 0

1√
3·4

1√
3·4

1√
3·4 − 3√

3·4 0

1√
4·5

1√
4·5

1√
4·5

1√
4·5 − 4√

4·5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is well known and easy to verify that for every positive integer n, the Helmert matrix
Hn belongs to the orthogonal group, O(n). Hence when Cn is the feasible matrix defined in
(6), the matrix

X̂ = Cn H ′
n

is also feasible. It is our contention that just as in the case of n = 2, the matrix X̂ = Cn H ′
n

solves Pn(r) for every integer n ≥ 2. Hereafter, we write X̂ = C H ′ with the understanding
that the integer n ≥ 2 is fixed at the order under discussion.

Now, with a bit of straightforward matrix algebra, the elements of X̂ are given by

xi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1+(n−1)r

n , if j = 1,

√
1−r

( j−1) j , if j > i ≥ 1,

−(i − 1)

√
1−r

(i−1)i , if j = i > 1,

0, if i > j > 1.

(17)

Moreover, it can be verified that the value of the objective function corresponding to this
matrix is given by the formula (12), that is

Fn(C H ′) = tr(A) + r tr(D). (18)

By itself, this does not prove that X̂ is optimal for Pn(r). For that we turn to some
well known matrix-theoretic results. The idea will be to show that the function tr(X AX ′) is
bounded above by a quantity which it attains when X = C H ′.

Our objective function is the trace of X AX ′, where A is a diagonal matrix with elements
a1 ≥ a2 ≥ . . . ≥ an ≥ 0, and a1 > an . For the reason discussed above, we are interested
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in letting X = CU where U is orthogonal. At this point we use the well known fact that
tr(AB) = tr(B A) when A and B are arbitrary conformable matrices. We have

tr(X AX ′) = tr(CU AU ′C) = tr(U AU ′C2) = tr(U AU ′ R) = tr(AU ′ RU ).

Recall that 0 < r < 1. The matrix R can be decomposed as V ′ BV where B is diagonal
and positive definite with b1 ≥ b2 ≥ · · · ≥ bn > 0 and V is orthogonal. After replacing R
by this factorization and then defining the orthogonal matrix W = V U , we see that

tr(AU ′ RU ) = tr(AW ′ BW ) = tr(W AW ′ B).

In summary, we have

tr(X AX ′) = tr (W AW ′ B).

Accordingly, we can assert that

max
X∈X

tr(X AX ′) = max
W∈O(n)

tr(W AW ′ B) ≤ max
W,Z∈O(n)

tr(W AZ B) =
n∑

i=1

σi (A)σi (B),

where σ1(A), . . . , σn(A) and σ1(B), . . . , σn(B) denote the singular values of A and B,
respectively.

The last equality follows from a theorem of von Neumann [7] (which is discussed by
Marshall and Olkin [5, Chapter 20]) stating that for arbritrary real square matrices A and B
of order n and for any U, V ∈ O(n),

tr(U AV B) ≤ max
U,V ∈O(n)

tr(U AV B) =
n∑

i=1

σi (A)σi (B). (19)

In our case, the matrices A and B are diagonal; A is positive semidefinite and B is positive
definite. Hence the singular values σi (A) and σi (B) are just the diagonal elements ai and
bi , respectively, of these matrices. Under these conditions, equality holds in (19) when the
orthogonal matrices U and V are permutation matrices that align the diagonal elements so
that σ1(A) ≥ . . . ≥ σn(A) and σ1(B) ≥ . . . ≥ σn(B). (See, e.g., Hardy, Littlewood and
Pólya [4, Section 10.2] for the extremal values of such expressions.) When this is done, the
right-hand side of (19) is

n∑

i=1

σi (A)σi (B) = a1[1 + (n − 1)r ] +
n∑

i=2

ai (1 − r)

=
n∑

i=1

ai +
n∑

i=1

r(a1 − ai ) = tr(A) + r tr(D).

Altogether, this amounts to saying that

max
X∈X

tr(X AX ′) ≤ tr(A) + r tr(D).

But, as we have already noted in (18), this upper bound on Fn(X) is attained when
X = C H ′.

Remark 2 An alternative argument to the achievement of the bound tr(A) + r tr(D) is that
in (19), tr(W AW ′ B) = ∑n

i=1 σi (A)σi (B) for W = I because the diagonals of A and B are
both arranged in descending order. (The role of Z ∈ O(n) in (19) is to assure the ordering
we already have.)
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The upshot of this argument is

Theorem 1 For all r such that 0 < r < 1 and all integers n ≥ 2, the matrix X̂ = Cn H ′
n

solves problem Pn(r), and the optimal value is given by Fn(X̂) = tr(A) + r tr(D).

Note that when r = 0 or r = 1, this expression for the optimal value of Fn is still valid.

4 Variants of the main problem

Problem Pn(r) has some interesting variants that are worthy of attention. For instance, a whole
class of problems comes about by replacing the objective function Fn(X) = tr (X AX ′) by
one of the elementary symmetric functions of the eigenvalues of X AX ′. The k-th elementary
symmetric function, denoted by Ek , of the n variables λ1, . . . , λn is the sum of all monomials
of the form λi1λi2 . . . λi j . For k = 1, 2, . . . , n, consider a family of maximization problems
Pn,k(r):

Pn,k(r) : maximize Ek(λ(X AX ′)) subject to X X ′ = R, (20)

where λ(X AX ′) = (λ1(X AX ′), . . . , λn(X AX ′)).
To bring this problem statement into line with that of Sect. 1, note that

Ek(λ(X AX ′)) = tr((X AX ′)(k)),

where (X AX ′)(k) denotes the k-th compound of X AX ′. By the Binet-Cauchy Theorem for
compound matrices (X AX ′)(k) = X (k) A(k)(X ′)(k), which permits us to state the problem as

Pn,k(r) : maximize tr(X (k) A(k)(X ′)(k)) subject to X X ′ = R.

(For further details on compounds, see Aitken [1] or Marshall and Olkin [5].) The matrix A(k)

is guaranteed to be diagonal, but its diagonal elements are not guaranteed to be in descending
order. This property can be produced by a principal rearrangement. To avoid extra notation,
we assume that this has been done from the start.

Let Y = R−1/2 X so that Y Y ′ = I , and (20) becomes

Pn,k(r): maximize tr(Y (k) A(k)Y (k)′ R(k)) subject to Y ∈ O(n).

Replace R by H�H ′, where H ∈ O(n) is the Helmert matrix Hn of order n, and � =
diag(λ1(R), . . . , λn(R)); more specifically, � = Diag(1 + (n − 1)r, 1 − r, . . . , 1 − r). With
Z = UY ∈ O(n), the problem becomes

Pn,k(r): maximize tr(Z (k) A(k)(Z ′)(k)�(k)) subject to Z ∈ O(n). (21)

From (19) and the fact that Z ∈ O(n) implies Z (k) ∈ O(C(n, k)),

max
Z∈O(n)

tr(Z (k) A(k)(Z ′)(k)�(k)) ≤ max
Z ∈ O(n)

V ∈ O(C(n, k))

tr(Z (k) A(k)V �(k))

=
C(n,k)∑

i=1

σi (A(k))σi (�
(k)), (22)

which has the same form as (19). The eigenvalues (positive diagonal elements) of �(k)

are arranged in descending order. We have assumed that those of A(k) are as well. If this
assumption is not adopted from the start, a suitable principal rearrangement will produce
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the desired ordering although the permutation matrix that accomplishes this task cannot be
stated a priori. To complete the proof, we need to specify a matrix X ∈ X that leads (via the
string of substitutions X → Y → Z ) to equality in (21). We assert

Theorem 2 For 0 < r < 1 and 1 ≤ k ≤ n (n �= 1), the matrix X = Cn H ′
n solves problem

Pn,k(r) provided the eigenvalues of A(k) are already arranged in descending order.

5 Some computational experience

As suggested previously, one of the potential uses for an optimization problem with a closed-
form solution is testing whether particular algorithms are capable of finding its certified
optimal solution. With this in mind, a group of small test cases were run using 8 solvers
available on the NEOS server http://neos.mcs.anl.gov/neos/solvers/index.html. Specifically,
the solvers used in these experiments (and the categories under which they are listed) were

Global Optimization: Nonlinear Constrained Optimization:

ASA, PGAPack, and PSWarm Ipopt, Minos, Mosek, Pennon, and SNOPT

The problems were all submitted to NEOS using the AMPL format. We are most grateful
to Dongdong Ge and Yinghui Wu for their assistance in coding and running these trials. A
total of 13 randomly generated problems for n = 2, 3, 5 and 10 were created and submit-
ted to the 8 solvers. All problems were run with the corresponding “neutral” starting point
Cn = µI + νE (see (5) and (6)) and again from the (presumed) minimum. The latter were
chosen as the matrices obtained from X = CnU (see (16)) where U was taken as (one of) the
permutation matrices that produced the smallest objective function value. The outcome of
the these trials can be summarized as follows. None of the three global optimization solvers
identified above was able to solve any of the submitted problems. It appears that they were
not designed to do so. As for the other five solvers, we found that only Pennon found a global
maximum in each of the 13 cases. Ipopt and SNOPT were nearly as good, managing to
obtain a global maximum in 10 and 9 instances, respectively. Minos solved 4 of the problems
whereas Mosek solved none.
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